以太坊今日将完成柏林硬分叉升级 这些知识点你需要了解
发布于 3 年前 作者 dmh121412 965 次浏览 来自 以太坊

在北京时间4月15日下午18:00左右(具体是以太坊网络区块高度达到#12244000时),以太坊的柏林(Berlin)硬分叉升级将会发生,这次升级将纳入4个新的EIP改进提案,而其中两个(EIP-2929和EIP-2930)将会影响交易的gas成本计算。

本文解释了在这次硬分叉升级前后的gas成本计算,这将如何随EIP-2929而发生改变,以及如何使用EIP-2930引入的访问列表功能,原文作者是Nomic Labs软件开发者Franco Victorio。

注:文章篇幅较长,以下是其中的一些要点:

柏林硬分叉改变了一些opcode操作码的gas成本。如果你在dapp或智能合约中有一个硬编码的gas值,它们可能会停止工作。如果发生这种情况,并且智能合约是不可升级的,则用户将需要使用访问列表(EIP-2930)来启用它。

访问列表可用于稍稍降低gas成本,但在某些情况下,它们实际上会增加gas消耗总量。

geth包含了一个新的RPC方法(eth\u createAccessList)来简化访问列表的创建。

柏林硬分叉前的gas成本 EVM执行的每个opcode操作码都有一个相关的gas成本。对于大多数操作码而言,这个成本是固定的:PUSH1总是消耗3个单位的gas,MUL则消耗5个单位的gas,等等。而对于其他操作码来说,它是可变的:例如,SHA3操作码的成本取决于其输入的大小。

我们将重点讨论SLOAD和SSTORE操作码,因为它们是受柏林硬分叉影响最大的操作码。我们稍后将讨论那些以地址为目标的操作码,就像所有的 EXT和CALL操作码,因为它们的gas成本也会发生变化。

柏林硬分叉之前的SLOAD 如果没有EIP-2929,SLOAD的成本很简单:它总是会消耗800 gas。

柏林硬分叉之前的SSTORE 就gas而言,SSTORE可能是最复杂的操作码,因为它的成本取决于存储slot的当前值、新值以及它是否以前被修改过。我们将只分析一些场景以获得基本的理解。如果你想了解更多,请阅读本文末尾链接的eip。

如果slot的的值从0更改为1(或任何非零值),则成本为20000;

如果slot的的值从1更改为2(或任何其他非零值),则成本为5000;

如果slot的的值从1(或任何非零值)更改为0,则成本也为5000,但在交易结束时你将获得gas退款。这篇文章中,我们不会详细讨论退款,因为它们不受柏林硬分叉的影响;

如果以前在同一事务中修改了该值,则所有后续sstore的成本为800;

这里的细节有些枯燥,重要的一点是,SSTORE是非常昂贵的,其成本取决于几个因素。

实施EIP-2929之后的gas成本 EIP-2929改变了所有这些值,但在此之前,我们需要先谈谈这个EIP引入的一个重要概念:已访问地址和已访问存储密钥。

如果地址或存储密钥以前在交易期间被“使用”,则该地址或存储密钥就被视为已访问。例如,当你调用另一个合约时,该合约的地址会被标记为已访问。类似地,当你SLOAD或SSTORE某些slot时,它将被视为在交易的其余部分已被访问。不管是哪个操作码做的:如果一个SLOAD读取了一个slot,那么它将被认为对接下来的SLOAD以及SSTORE都是已访问的。

这里需要注意的一点是,存储密钥位于某个地址的“内部”。正如EIP所解释的:

“执行事务时,维护一组accessed_addresses: Set[Address] 和 accessed_storage_keys: Set[Tuple[Address, Bytes32]]” 也就是说,当我们说一个存储slot被访问时,我们实际上是说一对(address, storageKey)被访问了。

话虽如此,我们还是来谈谈新的gas成本吧。

柏林硬分叉之后的SLOAD 在柏林硬分叉之前,SLOAD的固定成本是800 gas,现在,这取决于是否已访问了存储slot。如果未访问,则成本为2100 gas,如果已访问,则成本为100 gas。因此,如果slot在已访问的存储密钥列表中,则一次SLOAD的成本会降低2000 gas。

柏林硬分叉之后的SSTORE 让我们在部署EIP-2929的环境下回顾一下之前的SSTORE示例:

如果slot的值从0更改为1(或任何非零值),则成本为:22100(如果未访问存储密钥),20000(如果已访问存储密钥);

如果slot的值从1更改为2(或任何其他非零值),则成本为:5000(如果未访问存储密钥),2900(如果已访问存储密钥);

如果slot的值从1(或任何非零值)更改为0,则成本与上一项相同,然后加上退款;

如果以前在同一交易中修改了该值,则所有后续SSTORE的成本为100;

如你所见,如果要修改的slot以前被访问过,那么第一次SSTORE的成本将降低2100 gas。

下面的表总结了目前为止所有改变的值:

请注意,在最后一行中,谈论是否访问了slot是没有意义的,因为如果它以前被写入过,则表明其也被访问过。

EIP-2930 我们在文章开头提到的另一个EIP就是EIP-2930,这个改进提案添加了一种新类型的事务,该事务可以在事务负载中包括访问列表。这意味着你可以在事务开始执行之前预先声明哪些地址和slot应被视为是已访问的。例如,一个未访问slot的SLOAD成本为2100,但是如果该slot包含在事务的访问列表中,则相同的操作码成本就为100。

但是,如果当地址或存储密钥已被访问时,gas成本变更低了,这是否意味着我们可以将所有内容添加到事务的访问列表中并降低gas成本呢?不完全是这样,因为你还需要为添加的每个地址和每个存储密钥支付gas。

让我们看一个例子,假设我们正在向合约A发送一笔交易,访问列表可能如下所示:

如果我们用这个访问列表发送了一笔交易,并且第一个使用0x0 slot的操作码是SLOAD,则它将花费100 gas(而不是2100 gas),这就降低了2000 gas的消耗量。但事务访问列表中包含的每个存储密钥的成本为1900 gas,所以我们只省了100 gas。(如果访问该slot的第一个操作码是SSTORE,那么我们将节省2100 gas,这意味着如果考虑到存储密钥的成本,我们总共将节省200 gas。)

这是否意味着我们在使用带有访问列表的交易时总是能节省gas消耗?并非如此,因为我们还要为访问列表中的地址支付gas成本(在我们的示例中是"<address of A>")

已访问地址 以上,我们只讨论了SLOAD和SSTORE操作码,但这些并不是柏林硬分叉之后唯一改变的操作码。例如,原先调用操作码的固定成本为700 gas。但是在实施EIP-2929之后,如果地址不在访问列表中,则开销就是2600 gas,但如果是在已访问列表中,则开销就是100 gas。而且,与已访问存储密钥一样,之前访问该地址的操作码并不重要(例如,如果先调用EXTCODESIZE,则该操作码将花费2600 gas,使用相同地址的任何后续EXTCODESIZE、CALL、STATICCALL将花费100 gas)。

这是如何受到访问列表交易的影响的?例如,如果我们将一笔交易发送至合约A,而该合约调用另一个合约B,那么我们可以包含如下访问列表:

我们必须支付2400 gas的费用才能将这个访问列表包含在交易中,但是第一个使用B地址的操作码将花费100 gas(而不是2600gas)。所以我们这样做就节省了100 gas,如果B以某种方式使用它的存储,并且我们知道它将使用哪些密钥,那么我们还可以将它们包括在访问列表中,并为每个密钥节省100/200的gas(取决于第一个操作码是SLOAD还是SSTORE)。

但我们为什么要谈另一个合约呢?我们调用的合约怎么了?我们为什么不这样做?

我们可以这样做,但这是不值得的,因为EIP-2929指定了被调用的合约地址(即tx.to)总是包含在accessed_addresses列表中,因此这只会白白浪费2400 gas。

让我们再次分析上一节的示例:

这实际上是浪费,除非我们包含多个存储密钥。如果我们假设一个SLOAD总是首先使用一个存储密钥,那么我们至少需要24个存储密钥才能实现收支平衡。

显然,分析并创建这样的一个访问列表是没有意义的。幸运的是,我们有更好的方法。

eth_createAccessList RPC方法 Geth(从1.10.2版本开始)包含了一个新的eth\u createAccessList RPC方法,其可以用来生成访问列表。它的用法类似于eth_estimateGas,但它不是用于估算gas,而是返回如下内容:

也就是说,它为你提供了该交易将使用的地址和存储密钥的列表,以及如果包含访问列表,则会消耗的gas。(而且,与eth_estimateGas一样,这是一种估计值,在实际进行交易时,列表可能会更改。)

我想,随着时间的推移,我们会发现执行此操作的正确方法是什么,而我的伪代码猜测是:

激活合约 必须要指出的是,访问列表的主要目的不是使用gas,正如EIP所解释的:

“EIP-2929所引入的是减轻合约破坏风险,因为交易可预先指定和支付交易计划访问的帐户和存储slot。因此,在实际执行中,SLOAD和EXT*操作码只需要100 gas,这已经足够低了,它不仅可防止因该EIP而导致的破坏,还可以“激活”由于EIP 1884而卡住的任何合约。” 这意味着,如果一个合约对执行某些操作的成本做出假设,那么gas成本的增加可能会导致它无法工作。例如,一个合约调用另一个合约(例如someOtherContract.someFunction{gas: 34500}())因为它假设某个函数正好使用34500 gas,那么它就会中断,但如果在事务中包含适当的访问列表,那么合约将再次工作。

如果你想自己测试这些EIP,你可以复制这个repo,它有几个可使用Hardhat和geth执行的示例。有关说明,请查看README文件。

相关资料:

1、EIP-2929‌和EIP-2930‌

2、EIP-2930依赖于柏林硬分叉的另一组成部分:EIP-2718‌;

3、EIP-2929引用了大量EIP-2200‌的内容,所以如果你想更深入地了解gas成本,你应该从EIP-2200开始;

4、有关比较gas使用量变化的更复杂示例‌;

欢迎使用OKX交易所
回到顶部